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This work discusses a Bayesian approach to approximating the distribution of

parameters governing nonlinear structural systems. Specifically, we use a Markov

Chain Monte Carlo method for sampling the posterior parameter distributions thus

producing both point and interval estimates for parameters. The method is first used to

structural systems using free-decay vibrations. The approach is then applied to the

problem of identifying the location, size, and depth of delamination in a model

composite beam. The influence of additive Gaussian noise on the response data is

explored with respect to the quality of the resulting parameter estimates.

Published by Elsevier Ltd.
1. Introduction

System identification can be loosely defined as the process of estimating parameters associated with a specified model
(or models) from acquired data. There are two main schools of thought in estimation problems: the frequentist approach,
often based on the method of maximum likelihood (ML), and the Bayesian approach. Both methods seek to provide the
best possible parameter estimates in the face of the inevitable uncertainty (e.g. measurement error) present in the
observed data. In fact the likelihood function, describing the joint distribution of the data given the model and model
parameters, is the central ingredient in both approaches to estimation. However, the two approaches are fundamentally
different in how they treat model parameters resulting in different approaches to inference.

Historically, researchers working on nonlinear system identification problems have tended to focus on ML methods. In a
recent review paper Kerschen et al. [1, see Sections 6 and 7 and the many references contained therein], cover numerous
available techniques for nonlinear parameter estimation. These approaches are based on time domain (e.g. [2,3]),
frequency domain (e.g. [4–6]) or higher-order spectral analysis [7,8]. Each of these techniques takes the best estimate to be
the one that minimizes the mean square error between data and model. Although not explicitly stated, this choice of cost
function yields ML estimates for the parameters, provided that the uncertainty in the model is taken as additive, iid, jointly
Gaussian noise. The specific pros and cons associated with these methods are highlighted in [1] and are therefore not
discussed here. Rather, this work is focused on the conceptually different Bayesian alternative to nonlinear parameter
estimation problems.
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Perhaps the chief benefit of the Bayesian worldview is that it treats the parameters we seek to estimate, denoted by the
vector h, as random variables with joint distribution pðhÞ. This allows us to make probabilistic statements about our
estimated parameters. For example, let us say our goal is to collect data from a structure and estimate the crack length,
denoted ‘‘ y1’’ . The Bayesian framework allows us to make statements such as the following:
There is a 95 percent chance that the crack length y1 lies in the interval 0:1ry1r0:5 ½cm�.
There is no way to make an analogous statement using the frequentist view of the world because the crack length
would not be treated as a random variable. Instead we would have to make statements about the repeatability of our
estimation procedure i.e. the statistical machinery that produced the interval estimate. Thus we might be able to make the
statement ‘‘The methods we have used produce random intervals which may or may not include the unknown parameter;
they succeed in 95 percent of similar circumstances, but we can’t say anything with certainty about [0.1,0.5]’’ Although in
some cases the two methods will produce the same estimate and interval the interpretation of the interval is different, the
Bayesian interval being a probability statement about the parameter. Thus, our main reason for gravitating toward the
Bayesian viewpoint is that it provides a direct estimate of the information we are after as opposed to related (but different)
information. Additional reasons for the Bayesian approach are highlighted in Chapter 1 of [9]. First, the approach is more
amenable to more complex data and/or models than is the frequentist (ML) approach (including cases where a frequentist
approach does not exist). Secondly, the approach described here does not require asymptotics in approximating the
confidence intervals (as does the frequentist approach of using the Fisher Information Matrix to bound the variance of a
parameter estimate, see e.g., [10]).

This is certainly not the first paper to explore Bayesian methods in structural dynamics. A general Bayesian approach to
structural dynamics problems was put forth in the ’90s with works by Beck and Katafygiotis [11,12]. These, and subsequent
works (see e.g., [13]), relied on asymptotics in order to solve for the marginal parameter distributions which, as will be
shown, often take the form of high-dimensional integrals. At around the same time Sohn and Law [14] also developed a
Bayesian approach to the structural identification problem. Their approach, also described in subsequent papers [15,16],
circumvented the issue of solving for the desired marginal parameter distributions by using a so-called ‘‘branch-and-
bound’’ strategy to instead solve for the most likely damage hypothesis in a damage detection application.

Rather than abandon the goal of parameter estimation or rely on asymptotics, one can make use of a powerful approach
for sampling the marginal distributions without having to perform the integration. Such an approach was first proposed by
Metropolis et al. [17] in the early 1950’s for solving high-dimensional integrals in particle physics. A later work by Hastings
[18] extended this general approach, resulted in what is now known as the Markov Chain Monte Carlo (MCMC) approach to
approximating probability distributions. MCMC methods have since become extremely popular in implementing Bayesian
estimation in a number of fields ranging from ecology [9] to genetics [19] and have recently seen increased use in
engineering applications. Beck et al. appear to have pioneered the use of MCMC methods in structural dynamics in Beck
and Au [20] and more recently in Cheung and Beck [21]. Additional work by Glaser et al. [22] illustrated the approach in
detecting stiffness reduction in beams using static measurements. This method has also been used to estimate failure
probabilities in structural reliability problems as part of the ‘‘Subset Simulation’’ approach of Au et al. [23]. In related
works, Zhang and Cho [24] used the MCMC approach to help design an evolutionary algorithm for performing system
identification, while Kerschen et al. [25] used the MCMC approach to select among competing models for describing the
dynamics of a nonlinear mechanical system.

Our goal in this work is to focus on the use of the MCMC approach to Bayesian parameter estimation in nonlinear
systems using free-vibration, time-series data. The approach is certainly more general and could be applied to forced
structures as well. However, in practice the forcing function is not always obtainable while for the free-decay problem we
simply have to include the initial conditions as random variables to be predicted. A different approach that does not
require input data would be to perform the analysis using estimated frequencies as a means of comparing model to data as
was done in [13]. However here the practitioner has the additional step of estimating the frequencies from observed data.
This is compounded by the task of determining the analytical model frequencies which for nonlinear systems can be
extremely challenging. Thus, free-decay response data provide for a direct model-to-data comparison and are easily
obtainable in experiment. Another practical advantage of this general approach to system identification is that one does
not need to measure time-series data from each of the structural degrees-of-freedom (DOF) in order to estimate the
associated parameters. For example, a single time-series response from one of the DOFs can, in some cases, be used to
estimate model parameters associated with DOFs not observed.

In this work the approach is first used to estimate the parameters associated with a two degree-of-freedom nonlinear
structural system. The relationship between the quality of the resulting estimates and the signal-to-noise ratio is explored.
We then turn our attention to the difficult problem of estimating and tracking delamination growth in a composite beam
model. This model was recently developed in [26] where it was shown to accurately capture the localized buckling that
occurs due to the separation of the laminates. Subsequent work by the authors [27] focused on detection of the
delamination using a higher-order spectral analysis. Here, the focus is on identifying the damage parameters using only
free vibration data, a task to which the Bayesian approach using MCMC to sample the desired parameter distributions is
well-suited.
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2. Bayesian approach to structural parameter estimation

In structural dynamics the uncertainty that gives rise to the likelihood function is typically the result of measurement
error on the observed data. Assume that we have measured a structural response at a specific location giving the N-point
time-series

zn ¼ ynþZn; n¼ 1 . . .N (1)

where yn is the noise-free response and Zn is a sequence of independent, identically distributed (iid) samples drawn from a
zero-mean Gaussian distribution with variance s2

G. In this case we can write the likelihood

pLðzjh;s2
GÞ ¼

1

ð2ps2
GÞ

N=2
exp �

1

2s2
G

XN

n ¼ 1

ðzn�ynðhÞÞ2
" #

(2)

where we have specified the dependence on the model parameters through the model response ynðhÞ. The likelihood function
pLðzjh;s2

GÞ is a probabilistic statement (model) about the distribution of the observed data z� zn n¼ 1 . . .N given a model
response, determined by the parameter vector h. The method of maximum likelihood estimates the model parameters to be
those that maximize pLðzjh;s2

GÞ. Some important and useful properties of MLEs is that, under regularity conditions, they
are asymptotically unbiased and possess the minimum possible variance in the resulting parameter estimates. However, the
approach suffers from the practical and conceptual drawbacks already mentioned in the introduction.

In the event that data from M structural locations are recorded the likelihood function can be easily altered as

pLðzjh;s2
GÞ ¼

1

ð2ps2
GÞ

MN=2
exp �

1

2s2
G

XM
m ¼ 1

XN

n ¼ 1

ðzðmÞn �yðmÞn ðhÞÞ
2

" #
(3)

where the superscript (m) will henceforth be used to denote the degree-of-freedom being observed. In this case we have
made two important but realistic assumptions. First, we have assumed that the sensor noise is uncorrelated. Secondly we
have assumed that the sensor noise has the same variance across all sensors. Neither assumption is critical to the proposed
approach—for example if the sensor noise was assumed different for each sensor we would simply identify each noise
variance separately in the algorithm to be described in Section 3. This same likelihood function was used in [21]. It should
be mentioned that the approach does not require all degrees-of-freedom to be measured, that is to say MrDOF. Of course
the quality of the estimates typically improves with data from multiple measurement points, but is not strictly necessary.
Finally, we should also point out here that this framework can accommodate multiple models Mi i¼ 1 . . .NM such that
the likelihood function becomes pLðzjh;s2

G;MiÞ (i.e. the likelihood is conditional on the specified model). However, in this
work we will only consider a single model and drop the model notation Mi. Additionally, in the following general
discussion we consider the parameter vector to include the noise variance s2

G for notational convenience.
Bayesian analysis relies on Bayes Theorem, relating the prior parameter probability density function (PDF) ppðhÞ to the

posterior pðhjzÞ via

pðhjzÞ ¼ pLðzjhÞppðhÞ=pDðzÞ: (4)

The key ingredient relating the prior to posterior distributions is the likelihood function. Eq. (4) provides us a simple means
of relating prior information to the parameter distributions we want. The term in the denominator, pD(z), is a normalizing
constant that can be ignored in the following development. The joint parameter distribution contains the desired marginal
distributions of each of the P parameters

pðyjjzÞ ¼
Z
RP�1

pðhjzÞdh�jp

Z
RP�1

pLðzjhÞppðhÞdh�j (5)

where the notation
R
RP�1 dh�j denotes the multidimensional integral over all parameters other than yj. Thus, we require a

means of performing a potentially high-dimensional integral involving a likelihood function for which we will often have a
very complicated expression. For example, an analytical expression for yn for a nonlinear system response is a very
challenging problem for even a single DOF system possessing simple nonlinearities. Fortunately there exists a convenient
numerical approach to sampling from the marginal parameter distributions.

3. Markov-chain Monte-Carlo methods

The term ‘‘Monte Carlo methods’’ is used to describe simulation techniques for investigating probability distributions.
These techniques can be highly efficient, especially when independent samples can be generated. Unfortunately, posterior
distributions used in Bayesian inference are often complicated, making it difficult to draw independent samples.
Nevertheless it is often easy to draw a dependent sequence of samples representing posterior distributions. Over the last
60 years, stochastic algorithms have been developed which sample new values using rules determined by a fixed number
of previous observations. The result is a Markov chain; this form of simulation is known as Markov chain Monte Carlo
(MCMC). The magic of MCMC is in producing algorithms for which the resultant Markov chains have stationary
distributions equal to the distribution we wish to sample.
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3.1. Gibbs sampling

Gibbs sampling is a form of MCMC used to sample multivariate distributions. Consider a vector valued parameter
h¼ ðy1;y2; . . . ; yPÞ

0, data z, prior ppðhÞ, and likelihood pLðzjhÞ. Define h�j as the vector obtained by deleting the jth
component of h, viz.,

h�j ¼ ðy1; y2; . . . ; yj�1; yjþ1; . . . ; yPÞ
0:

Gibbs sampling of the posterior distribution

pðhjzÞppLðzjhÞppðhÞ

produces a sequence (Markov Chain) fhðiÞgi¼ 1 . . .ChainLength with components yðiÞj generated sequentially, for j=1,2,y,P.
The value yðiÞj is sampled from its full conditional distribution pðyðiÞj jz; h�j ¼ hði�1Þ

�j Þ, which for simplicity is denoted as pðyðiÞj j �Þ.
The full conditional distribution of yj can be thought of as the posterior distribution of yj, if it happened that the other P�1
parameters were known, and equal to their present values, i.e., if yk ¼ yði�1Þ

k for kaj. Like the posterior distribution pðhjzÞ,
the full conditional distribution is proportional to the product of likelihood and prior,

pðyðiÞj j �ÞppLðzjhÞppðhÞ;

the difference is that pðyðiÞj j �Þ is a function of yj alone, rather than of all P variables comprising h.
To implement Gibbs sampling, then, we only need to be able to sample full conditional distributions. The ease or

difficulty of this endeavor depends on the form of the likelihood function and the prior. Among the easy cases is the
circumstance of conditional conjugacy, when full conditional and prior are both identifiable as members of the same
parametric family.

3.2. Conditional conjugacy

To illustrate the notion of conjugacy, consider z, the number of successes in N independent Bernoulli trials, with success
parameter y. A likelihood function for y is

pLðzjyÞ ¼ yz
ð1�yÞN�z:

A beta prior for y on [0,1] has density function

ppðyÞpya�1
ð1�yÞb�1;

for some values a;b40. The posterior distribution is proportional to the product of likelihood and prior, hence is clearly a
member of the beta family of distributions, with parameters a0 ¼ aþz and b0 ¼ bþN�z. Beta priors are conjugate to the
binomial likelihood.

Suppose that the parameters s2
G and h are unknown in model (2) or (3). For reasons that will become clear

subsequently, we reparameterize the model using the precision parameter t¼ 1=s2
G, and show how conjugacy can be used

in describing a full conditional distribution for t. Given independent priors on ppðtÞ and ppðhÞ, the posterior distribution is

pðh; tj zÞptMN=2exp �
t
2

Q ðz; hÞ
� �

ppðtÞppðhÞ;

where

Q ðz; hÞ ¼
XM
i ¼ 1

XN

n ¼ 1

ðzðiÞn �yðiÞn ðhÞÞ
2 (6)

is the sum of squares in the likelihood. It follows that the full conditional distribution for t is

pðtj z; hÞptMN=2exp �
t
2

Q ðz; hÞ
� �

ppðtÞ:

The gamma family of distributions is described by density functions pðxÞpxa�1expð�bxÞ for x40, indexed by
parameters a;b40. Thus if t has a gamma prior with parameters a and b, the full conditional distribution for t is also in
the gamma family, with parameters a0 ¼ aþMN=2 and b0 ¼ bþQ ðz; hÞ=2. The gamma prior is conditionally conjugate for t.
We may therefore directly sample t (hence s2

G) at each step in the Markov chain without having to resort to the more
computationally intensive sampling approach described in the next section. In this work we use the so-called ‘‘diffuse’’
(uninformative) prior, obtained by setting a¼ 1;b¼ 0. Conditional conjugacy simplifies Gibbs sampling by allowing
reference to standard probability distributions (like the beta or gamma) readily available in standard software packages.

3.3. Metropolis–Hastings algorithm

Unfortunately, conjugate or conditionally conjugate priors are not always available. In such cases, techniques such as
rejection sampling can be used for sampling the full conditional distribution. One may also resort to the omnibus
Metropolis–Hastings algorithm, a simple implementation of which we now describe.
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Suppose that we wish to draw samples from a specific distribution f ðyÞ (in our case f ðyÞ might be the left-hand-side of
Eq. 5, pðyjÞ). The Metropolis–Hastings algorithm generates a sequence fyðiÞg by a 2-step procedure. At stage i, a candidate
value y� is sampled based on the current value yði�1Þ; it is sampled from a distribution function gðxjyði�1Þ

Þ. A Bernoulli trial is
performed, with success probability r0 ¼minfr;1g, where

r¼
f ðy�Þgðyði�1Þ

jy�Þ

f ðyði�1Þ
Þgðy�jyði�1Þ

Þ
;

if the result of the trial is success, we set yðiÞ ¼ y�; otherwise, we set yðiÞ ¼ yði�1Þ. The alternatives are often described as
‘‘moving’’ or ‘‘staying at the current value’’, but it is important to note that in the latter case, the same value is recorded
twice (once as yði�1Þ, once as yðiÞ).

It is often easy to describe a candidate generating distribution which is symmetric in its arguments, hence cancels out of
the numerator and denominator of r. For example, if y� is uniformly distributed on an interval of length 2A centered on
yði�1Þ, then its density function is

gðxjyði�1Þ
Þ ¼

1

2A
; jx�yði�1Þ

joA; (7)

so that gðyði�1Þ
jy�Þ ¼ gðyði�1Þ

jy�Þ.
Suppose that we use this uniform candidate generator, with A=1, and apply the technique to generating samples from

the standard normal distribution f ðyÞ ¼ expð�y2=2Þ=
ffiffiffiffiffiffi
2p
p

. Then r simplifies to

r¼ exp
ðyði�1Þ

Þ
2
�ðy�Þ2

2

 !
:

Two features of this remarkable algorithm deserve comment. First, that the first-order Markov chain it produces
will have stationary distribution equal to f ðyÞ, provided only that the candidate generating distribution and the
starting value yð0Þ allow the chain to reach all values t for which f ðyÞ40. Thus in generating standard normal variates
with the uniform candidate generator, it does not matter if we start the chain at yð0Þ ¼ 25, even though such
values are exceedingly rare for a standard normal variate. Most of the first 50 or so moves toward zero will all be
accepted, while most of the first 50 or so moves away from zero will all be rejected, and the chain will rush in towards
the range (�3,3) typical of standard normal variables. These initial values are discarded in MH sampling, described as a
‘‘burn-in’’.

The second important feature of this algorithm is that its implementation depends on the desired distribution only
through the ratio in r. Thus in calculating r for the standard normal distribution, the constant terms

ffiffiffiffiffiffi
2p
p

cancel. This is an
enormous boon in calculating full conditional distributions, which are defined implicitly as the distribution proportional to
product of likelihood and prior; the normalizing constant in Eq. (4), which makes the distribution integrate to 1, need not
be calculated.

Practical implementation of the MCMC technique can require some tuning. Large values for the ‘‘tuning parameter’’ A (Eq. (7))
decreases the likelihood of accepting a new value, thus the samples in the chain tend to be highly correlated. Too small a step,
however, and the algorithm can take a prohibitively long time to converge. The tradeoff between excessive computation time
(small steps) and not generating independent samples (big steps) is well-known. Here we use a simple approach whereby the
tuning parameter is adjusted on-the-fly in order to achieve an appropriate acceptance rate of between 30 percent and 50 percent.
This range of acceptance probabilities has been demonstrated to produce Markov chains with low auto-correlation (good mixing)
[9]. During the burn-in period we simply divide A by the constant value 1.007 after each rejection and multiply by 1.01 after each
acceptance. Thus, an acceptance causes us to expand our parameter search while rejection results in smaller ‘‘kicks’’ to the
previous value in the chain. The asymmetry in the constants causes a slight bias in the favor of rejection. This simple approach is
quite effective at producing acceptance rates of 40 percent, a good target for the MCMC algorithm. Details of this approach are
discussed in [9].

Algorithm 1. The MCMC algorithm using Metropolis–Hastings with Gibbs sampling for Gaussian likelihood and Uniform
‘‘transition’’ distribution gðy�j ; yjði�1ÞÞ ¼ 1=ð2AjÞ
Task: Generate the posterior parameter distributions pðyjÞ for j¼ 1 . . . P given the model, the observed data z� zn n¼ 1 . . .N, and prior parameter

distributions ppj
ðyjÞ. Also estimate the noise variance yPþ1 ¼ s2

G

Initialization: Initialize chain i=0
Initial guesses for parameter values (chosen from the priors) hð0Þ � yjð0Þ j¼ 1 . . . P
Initial values for tuning parameters Aj j¼ 1 . . . P
Sample initial variance from inverse Gamma distribution
yPþ1ð0Þ ¼ IGðN=2þ1;0:5Q ðz; hð0ÞÞ

Set number of burn-in iterations B

Main iteration:increment i by 1 and apply
For each parameter j
Generate candidate y�j ¼ yjði�1Þþ2Aj � Uð�1;1Þ where U(a,b) is a uniformly distributed number on [a,b]
Compute r¼ expðð�0:5=yPþ1ði�1ÞÞ � ðQ ðz; h�Þ�Q ðz; hði�1ÞÞÞÞ � ppj
ðh�Þ=ppj

ðhði�1ÞÞ where h� � ðy1ðiÞ; � � � ;yj�1ðiÞ;y
�

j ; yjþ1ði�1Þ; � � � ; yPði�1ÞÞ and

hði�1Þ � ðy1ðiÞ; � � � ;yj�1ðiÞ;yjði�1Þ;yjþ1ði�1Þ; � � � ;yPði�1ÞÞ
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If Uð0;1Þor keep the new value, i.e. set yjðiÞ ¼ y�j , and adjust tuning parameter Aj ¼ Aj � 1:01
Else reject the new value, keeping yjðiÞ ¼ yjði�1Þ and adjust tuning parameter Aj=Aj/1.007.
Directly sample the variance posterior yPþ1ðiÞ ¼ IGðN=2þ1;0:5Q ðz;hðiÞÞ

After i4B iterations, cease adjusting the Aj and record subsequent
values yjðiÞ as members of pðyjÞ.
The algorithm for executing this specific implementation of MCMC is given in Algorithm 1. This pseudo-code implicitly
assumes (1) a diffuse Gamma prior on the precision parameter 1=s2

G, (2) a Gaussian likelihood function, governed by the
sum-squared error between data and model and (3) a uniform transition distribution (Eq. (7)). The code is quite simple to
implement, the costly step being the determination of the sum-squared error function Q ð�; �Þ (Eq. (6)). For nonlinear
systems, for which no analytical solution exists, generating the model output yn for a given parameter vector requires
numerically integrating the equations of motion. Also note that in the above described implementation, as the Gibbs
sampler moves through the parameter vector the newly updated values are used. That is to say, for j=2 we use y1ðiÞ rather
than y1ði�1Þ as the first element of hði�1Þ. Finally, many statistical packages provide routines that generate samples from a
Gamma distribution but not from an inverse Gamma distribution. Fortunately there is a simple relationship between the
Gamma Gð�; �Þ and inverse Gamma IGð�; �Þ distributions

IGða; bÞ ¼ 1=Gða;1=bÞ

so that for our problem we may sample the variance by drawing

yPþ1ðiÞ � 1:0=½GðN=2þ1;2=Q ðz;hðiÞÞ�:

There are obviously many variations on the above described algorithm, however Algorithm 1 presents a simple but useful
implementation that is straightforward to code in software.

4. Example 1: 2-DOF nonlinear spring–mass-damper system

In order to illustrate the above described identification procedure, consider the two degree-of-freedom (DOF) system
described by the second order, nonlinear, ordinary differential equations

½M� €y tþ½C� _y tþ½K�ytþgð _y t ;ytÞ ¼ 0 (8)

where

½M� ¼
m1 0

0 m2

" #
½C� ¼

c1þc2 �c2

�c2 c2

" #
½K� ¼

k1þk2 �k2

�k2 k2

" #

are constant coefficient mass, damping and stiffness matrices respectively. The nonlinear function gð�Þ provides quadratic
coupling between masses. Here we consider a quadratic restoring force between masses 1 and 2 so that

gð _y t ; ytÞ ¼
�knonðy

ð2Þ
t �yð1Þt Þ

2

knonðy
ð2Þ
t �yð1Þt Þ

2

8<
:

9=
;

where knon is the nonlinear stiffness coefficient. We consider as the observed data N=512 points of a noise-contaminated,
free-decay response, obtained by numerically integrating Eq. (8) with a time-step of Dt ¼ 0:01 s so that discrete and
continuous time are related via t¼ nDt . The initial conditions were set to the values yð1Þ0 ¼ 0:0 m, vð1Þ0 �

_yð1Þ0 ¼ 0:0 m=s,
yð2Þ0 ¼ 0:15 m, and vð2Þ0 �

_yð2Þ0 ¼ 0:0 m=s. The parameter values used in generating the response data were k1=2000 N/m,
k2=1500 N/m, c1 ¼ c2 ¼ 6 N s=m, and knon=10,000 N/m2. The mass parameters were fixed to the values m1=m2=1 kg and
were assumed known (measured) at the outset. The variance of the additive, Gaussian distributed noise is defined by the
signal-to-noise ratio SNR¼ s2

y=s2
G so that the observed data are given by

zð1Þn ¼ yð1Þn þ

ffiffiffiffiffiffiffiffiffi
s2

y

SNR

s
Zn

where each Zn is an iid Gaussian random variable and s2
y is the variance of the true underlying signal. We are assuming in

this example that only a single time-series measurement is available in forming the likelihood (i.e. M=1 in Eq. (3)). For this
example the additive noise level was set at �10 dB down, i.e. the signal variance was 10� greater than the noise variance.
The job of the algorithm is to identify c1,c2,k1,k2 as well as the nonlinear parameter knon, the initial conditions y(1,2)

0 , v(1,2)
0 ,

and the noise variance s2
G.

Fig. 1 shows the resulting stationary parameter distributions for each of the identified quantities. Each of the model
parameters were identified using the above-described Metropolis–Hastings algorithm with Gibbs sampling and assuming
Uniform priors. The exception was the variance s2

G which could be sample directly by assuming a conjugate Gamma prior
as described in Section 3.2. In other words, at each step in the chain we choose s2

G � 1=GðMN=2; 2
Q ðz;hÞÞ where Gð�Þ is the

Gamma distribution. In building the Markov Chains we used a burn in of 150,000 iterations and retained the subsequent
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Fig. 1. True model output and corrupted (observed) data (a) followed by the posterior distributions of, respectively (b–k), k1, k2, c1, c2, y(1)
0 , v(1)

0 , y(2)
0 , v(2)

0 ,

s2
G , and knon.
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Fig. 2. Progression of the 95 percent confidence interval associated with the parameter estimates as a function of signal-to-noise ratio: (a) linear stiffness,

k1 (b) linear stiffness, k2 (c) linear damping, c1 (d) linear damping, c2 (e) nonlinear stiffness, knon and (f) noise variance, s2
G. As expected, a higher SNR tends

to result in better estimates.
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50,000 iterations as the stationary posterior distributions of interest. Fig. 1 shows the noise-corrupted time-series data
used in the identification along with all identified parameters. The algorithm is clearly able to identify both the system
parameters and the initial conditions using only a short, noisy free-decay response as the observed data. Certain
parameters are identified with more confidence than others. Notoriously difficult to obtain damping estimates have the
largest percentage variance of all parameters while the stiffness estimates are better defined. The nonlinearity parameter is
similarly estimated to lie within a fairly narrow confidence band.

As expected, the distributions tend to narrow as the signal-to-noise ratio is increased. Fig. 2 shows the progression of
the 95 percent confidence intervals, defined as the central 95 percent of the 50,000 values that comprise the stationary
Markov chain, as a function of SNR. Using this approach each of the parameters is correctly identified with their associated
confidence intervals. There is no need to base the confidence intervals on an assumed Gaussian distribution as is often
done in parameter estimation (e.g. assume 73 standard deviations from the mean as 95 percent confidence). The MCMC
algorithm provides an approximation of the entire posterior PDF, regardless of its underlying form. The above results have
demonstrated that we can successfully identify both linear and nonlinear system parameters in a multi DOF structure
using only measurements of noisy, free-decay response data. The next example involves the more difficult problem of
detecting delamination in composite structures.

5. Delamination identification in a composite beam

As a second example, we seek to identify the location, extent, and depth of delamination in a composite beam structure.
The dynamic beam model was derived previously in [27] and is shown schematically in Fig. 3. This model is low
dimensional (only three independent coordinates need to be specified), yet was shown experimentally to accurately
capture the localized buckling that occurs due to the presence of the delamination under static loading [26]. The global
beam motion is assumed to be dictated by the first mode of the response, thus the global displacement assumes the form

y1ðx1; tÞ ¼ q1ðtÞc1ðx1Þ

where

c1ðxÞ ¼
3

2

x

L

� �2

�
1

3

x

L

� �3
� �

is a normalized shape function describing the vertical beam deflection at any point x, measured from the left end of the
beam. The other two coordinates, describing the time-dependent motion of the upper (region 2) and lower (region 3)
laminates respectively, are assumed to be of the form

y2ðx2; tÞ ¼ y1ðx2þxa; tÞþq2ðtÞC2ðx2Þþ
1

2
ð1�aÞh

y3ðx3; tÞ ¼ y1ðx3þxa; tÞþq3ðtÞC3ðx3Þ�
ah

2

C2;3 ¼ 1�cos2 p x2;3�xa

xb�xa

� �
(9)

where the shape functions C2;3 describe the deflected shape of regions 2 and 3 in Fig. 3. The constant terms in Eq. (9)
denote the neutral axis offsets, measured from the global neutral axis, of each of the laminates. Substituting these
expressions into Lagrange’s equation yields a set of three coupled, nonlinear differential equations in terms of the
time-dependent vector qðtÞ � ðq1ðtÞ;q2ðtÞ; q3ðtÞÞ

½M� €qtþ½C� _qtþ½KL�qtþ½KM�q1ðtÞqtþ½KQ �q
2
t þ½KC �q

3
t ¼ 0: (10)
Fig. 3. Schematic of the dynamic delaminated beam model. Region 1 is simply modeled as a linear cantilevered beam whose motion is governed by the

first mode of vibration. Regions 2 and 3 are modeled as nonlinear beams where axial stretching is permitted.
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The equations of motion are therefore described in terms of the material properties of the beam, the dimensions of the
beam, and the parameters associated with the damage. These damage parameters are xa, the delamination starting
location, xb, the delamination end point, and a, the delamination depth specified as a fraction of the overall beam thickness
h. Additionally, we have chosen to add a viscous damping model for both the global vibration of the beam and the local
vibrations of the delaminated portions of the beam. Expressions for each of the constant coefficient matrices are provided
in Appendix A.

In the following analysis it is assumed that there is no uncertainty in the beam length or material properties. We
therefore set L=0.24 m, h=2.25 mm EI=75,889,600,000 GPa, and r¼ 1234:0 kg=m. The damage parameters, xa,xb,a are
assumed to be unknown as are the viscous damping coefficients c1,c2,3 (see Eq. (A6) and the initial global beam deflection
y1(0)). Again we assume that we will have access to a single, noise corrupted signal and that the noise is additive, iid
Gaussian distributed. Thus the likelihood function is the same as was used in the previous example assuming only one
signal (in this case the global motion) can be recorded. Previous work by the authors demonstrated that global, vibration-
based detection was not possible unless the measurement was recorded from near the delamination site [27]. This stems
from the fact that the only coupling between the laminate vibrations and the rest of the beam is inertial. Thus, for relatively
small delaminations (what we are interested in) there is little in the way of influence with respect to the global motion
away from the delamination site. The small influence of the delamination on the global response, even at the delamination
site, makes this a particularly challenging system identification problem. In what follows we assume that we are able to
record the beam response from the delamination site. Again we assume a transient response to an initial displacement and
use N=512 sampled points at a sampling interval of Dt ¼ 0:001 s. The variance of the additive Gaussian noise was fixed
such that the signal-to-noise ratio was SNR= +20 dB.
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Fig. 4 shows the observed (noise corrupted) data along with the true underlying free-decay signal. Also shown are the
estimated structure parameter distributions, initial condition distributions, and the distribution of the noise variance along
with the true values for each parameter. Despite the very small influence of the nonlinearity on the response the algorithm
is still able to identify the delamination start and end points as well as the depth. The delamination depth appears easier to
identify as evidenced by the very narrow confidence interval around the correct value of a=0.1. The delamination start and
end points have very little influence on the global response as was illustrated in [27], hence the confidence intervals for
these two parameters are large. Thus, the method gives us a clear indication of the degree to which we can trust our
estimates. In this case we can be fairly certain of the delamination depth, but much less certain about our ability to
estimate both the beginning and end points of the delamination. If our application requires a tighter confidence interval we
might need to try a larger excitation (allowing the nonlinearity to more strongly influence the response) or maybe even
change to a local damage detection method. Regardless, the information about our faith in the ability to estimate these
parameters is clearly valuable information. Both the linear damping c1, the initial beam deflection y1(0) and the noise
variance s2

G are easily estimated with a high degree of confidence. These parameters clearly have a large influence on the
global response thus one might expect them to be easily obtained.

It turns out that shallow delaminations, such as the a=0.1 case just presented, are more difficult to identify than thicker
ones. Consider the case of a delamination of depth a=0.2 with the start and end points of the delamination fixed at
xa=0.05 m and xb=0.2 m respectively. As in the previous example the global damage parameters, c1,y1(0) are trivial to
identify. The difficult to identify parameters, xa,xb,a,c2,3 are shown in Fig. 5. The variance associated with the estimates of
each of the parameters is reduced from the previous case. This example points out that certain combinations of parameters
are more easily identified than others. It depends to large extent on the degree to which the estimated model parameters
influence the observed data. Parameters with little effect on the observed response will be hard to identify whereas the
converse is also true.

As a final example we demonstrate how the approach can be used to track damage in a structure. For this example,
the delamination starting point and depth were fixed to the values xa=0.05 m and a=0.2 respectively. The delamination
end point was slowly varied from xb=0.1 m up to xb=0.2 m. Again, using only the noisy free-decay response the goal
was to estimate and track the delamination end-point. Fig. 6 shows the progression of estimated delamination
length along with the associated 95 percent confidence interval. Also shown are the ‘‘true’’ values for xb used in generating
the time-series. For each damage case we used a prior generated from the previous case. Specifically, we selected the
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prior from a uniform distribution centered at the previous mean value with a width of roughly two standard deviations.
For the first damage case (xb=0.1 m) we also assumed a uniform prior on the range xb �Uðxa ¼ 0:05;0:1Þ (i.e. assume
an initial delamination length between 0 and 0.05 m). Again, for this particular example the damage parameters xa,xb,a
have very little influence on the global vibrational response, thus the confidence intervals tend to be relatively large.
However the algorithm is clearly tracking the progression of the delamination with reasonable accuracy. By the time the
delamination is large with respect to the beam length, the confidence intervals narrow considerably. The large
nonlinearities produce a more readily identifiable signature in the global response, hence the associated nonlinearity
parameters are more easily identified. The information provided in Fig. 6 is precisely the information that the owner of a
structure would be interested in: the estimated damage extent and associated confidence in that estimate. Given this
information and the cost associated with the structural damage, one can make optimal decisions regarding how best to
maintain that structure.
6. Conclusions

This work has presented an approach for identifying nonlinear, multi-degree-of-freedom structures using only observed
free-decay response data. The approach appears to work well for limited, noise corrupted observations that are easily
obtainable in experiment. This makes the approach attractive from a practical standpoint with the main drawback being
the computational effort required to build the stationary Markov chains. At each step in building process the practitioner is
required to numerically integrate the model forward in time for each parameter being identified. Nonetheless, the
approach is effective at identifying both linear and nonlinear model parameter distributions for structural models. This is
precisely the information that is of interest in damage detection problems. Here we have show the approach can be used to
estimate and track the length of delamination in a composite beam using only noisy, free decay response data. When
combined with knowledge of the costs associated with structural damage, this approach provides the information
necessary for making optimal maintenance decisions.
Acknowledgment

The authors would like to acknowledge the Office of Naval Research under contract No. N00014-09-WX-2-1002 for
providing funding for this work.



ARTICLE IN PRESS

J.M. Nichols et al. / Journal of Sound and Vibration ] (]]]]) ]]]–]]]12
Appendix A

Eq. (10) was derived using energy methods. The constant coefficient matrices associated with these governing
equations are given here. The linear stiffness matrix [KL] is given by

½KL� ¼

bh3
ð�4L3þ3ða�1Þaðxb�xaÞ

3
ÞE

16L6
0 0

0
a3bh3p4E

6ðxb�xaÞ
3

0

0 0
ð1�aÞ3bh3p4E

6ðxb�xaÞ
3

0
BBBBBBBBB@

1
CCCCCCCCCA
: (A1)

The two matrices involving quadratic terms are defined as

½KM � ¼

0 0 0

0 �
3ð1�aÞabh2p2ð2L�xa�xbÞE

8L3ðxb�xaÞ
0

0 0
3ð1�aÞabh2p2ð2L�xa�xbÞE

8L3ðxb�xaÞ

0
BBBBBB@

1
CCCCCCA

½KQ � ¼

0 �
3ð1�aÞabh2p2ð2L�xa�xbÞE

16L3ðxb�xaÞ

3ð1�aÞabh2p2ð2L�xa�xbÞE

8L3ðxb�xaÞ

0 0 0

0 0 0

0
BBB@

1
CCCA: (A2)

The matrix multiplying the cubic term is given by

½KC � ¼

0 0 0

0
abhp4E

8ðxb�xaÞ
3

0

0 0
ð1�aÞbhp4E

8ðxb�xaÞ
3

0
BBBBBB@

1
CCCCCCA

(A3)

The mass matrix is slightly more complicated. Defining

a¼ �1

16L3p2
bhðxb�xaÞ½ðxaþxbÞrðð�3þp2Þx2

aþ6xaxbþð�3þp2Þx2
bÞ�2Lðð�3þ2p2Þx2

aþ2ð3þp2Þxaxbþð�3þ2p2Þx2
bÞ�

(A4)

the mass matrix is given by

½M� ¼

33

140
bhLr aa ð1�aÞa

aa 3

8
abhrðxb�xaÞ 0

ð1�aÞa 0
3

8
ð1�aÞbhrðxb�xaÞ

0
BBBBBB@

1
CCCCCCA

(A5)

The damping for both the global beam motion and laminates is assumed to follow a viscous model such that we have

½C� ¼

c1 0 0

0 c2;3 0

0 0 c2;3

0
B@

1
CA (A6)
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